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Appendix A.
An MS-BVAR to Evaluate U.S. Monetary Policy

This appendix describes the methodology used to estimate and conduct inference on the

MS-BVARs.

A.1. A Markov-Switching BVAR

Consider the structural MS-BVAR

yzAO(St) = :UQAJr(St) + ngil(st)a E¢ N(Onxla [n)a = 17 te 7T7 (A1>

where s; denotes an unobservable state (regime) variable and Z(s;) denotes an n x n diagonal

matrix of factor loadings scaling the degree of SV of the structural shocks in €;. Gathering all

= {Ao()}, As = {A, (W)}, and = = {Z(h)}

H, where H denotes the total number of states or regimes.

the parameters of each matrix together forms Ag
forh=1,...,

The evolution of s; follows a Markov process with the transition matrix ) = [g; ;], where
qi; = Prob[s; =i|s;_y = j] for 4,5 = 1,..., H. Sims, Waggoner, and Zha (2008) restrict )

to allow only for switching between adjacent regimes. The restricted transition matrix is

qu (1 —q2)/2 0 0
1 —qn q22
Q= 0 (1 —q22)/2 (1 —qu-1,a-1)/2 0
qH—-1,H-1 1- qH,H
i 0 0 (1 —qu-1,0-1)/2 qunu |

The likelihood function of the MS-BVAR (E.1) is

T
p(Y710,Q) =11 | D p we|Yic1,0,Q, s¢) p (s¢|Yi-1,6, Q)

t=1 StEH

(A.2)



where Yr = {v1,...,yr}, 0 = {Aop, Ay, =}, and the conditional likelihood function is

P (el Vi1, 0, @ s0) = (2m)/2[det (Ao ()™ = (1) Ao (s) )
xoxp {4 (4 A (s0) — 24Ay (50)) (1) (Wio (s0) — 1A+ (1))}

Evaluating this likelihood requires filtering the sequence of transition probabilities in p (s;|Y;_1, 6, Q).

Given the likelihood function (A.2) and prior, the posterior distribution of § and @ is

where the joint prior density for 6 and @ is

p(0,Q) h

Qsyysp—1-

_pOnQ 1

A.2. Priors

Posterior distributions of the MS-BVARs are constructed using a prior that has two distinct
elements. The first part of the prior relies on Sims and Zha (1998). Their prior is grounded
on the belief that each dependent variable in y; follows an independent random walk process.
The behavior of these multivariate random walk processes are governed by six hyperparam-
eters, which are gathered in the vector A = [\g Ay A3 Ay 15 u16].° Since the MS-BVARSs are
estimated on quarterly data, A = [1.0 0.2 1.0 1.0 1.0 1.0], as suggested by Sims and Zha.
The second part of the prior endows the transition probabilities in () with a Dirichlet
distribution. This prior controls the persistence of each regime. I set the Dirichlet prior
to match the average length of a U.S. recession from 1960Q1 to 2018Q4. On this sample,

the average NBER dated recession lasts 3.67 quarters, which sets the conditional transition

! Appendix A of Sims, Waggoner, and Zha (2008) describes procedures to filter these probabilities.

2Sims and Zha (1998) describe these hyperparameters as controlling the overall tightness of the prior on
own first lags, Ag, the relative tightness of the prior on lags of the other n — 1 variables in y;, A1, the relative
tightness of the prior on the rate of lag decay, A3, the relative tightness of the prior on the intercept term,
A4, and the prior beliefs about unit roots, ps5, and cointegration relationships, ug, among the variables in y;.



probabilities in @ (i.e., ;) to 0.73.

A.8.  Qverview of the Estimation and Inference Procedure

The MS-BVARs are estimated and evaluated using the multistage procedure described in
Sims, Waggoner, and Zha (2008).° This next section summarizes each stage of the estimation

and inference procedure; see Sims, Waggoner, and Zha (2008) for more details.

A.3.1.  Estimating the Posterior Mode

First, Sims, Waggoner, and Zha (2008) use a blockwise optimization algorithm to estimate
the posterior mode of # and @ in (A.3). Initializing the Metropolis-within-Gibbs MCMC
sampler at the posterior mode gives the sampler improved starting values, which increases
the efficiency of the sampler and lessens the chance it will become stuck in a local posterior

mode.

A.3.2.  Drawing from the Posterior using a Metropolis-within-Gibbs MCMC Sampler

Next, the Metropolis-within-Gibbs MCMC sampler of Sims, Waggoner, and Zha (2008) is
employed to construct the posterior distributions (A.3) of the MS-BVARs. These posteriors
are built using draws from the proposal distribution p(#, Q, St|Yr), where St = {s1,...,s7}.
Conditional on the sample data, priors, and p = 2,* the Metropolis-within-Gibbs sampling

algorithm draws from p(6, Q, Sr|Yr) by cycling through the following steps:

Step 1. Initialize #© and Q© at their posterior mode estimates and set k = 1.
Step 2. Draw S\ from p (S(Tk)]YT, g—1), Q(k_1)>.

Step 3. Draw Q™ from p (Q®|Yz, Sk, 60=1).

Step 4. Draw 6% from p (9(k)|YT, Q") ng)).

3The MS-BVARSs are estimated and evaluated using Dynare version 4.5.7 in conjunction with MATLAB
R2018b; see Adjemian et al. (2011) for further details. This software runs on the Henry2 Linux cluster at
the North Carolina State University High Performance Computing (HPC) Center; see https://www.ncsu.
edu/itd /hpc/main.php. Replication codes are available upon request.

4The lag length is set to the value that minimizes the Hannan-Quinn Criterion (HQC) of the constant
coefficient BVAR. Lag length selection results are available in the online Additional Results appendix.
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Step 5. If £ < K7 + Ky, set k =k + 1 and repeat Steps 2 through 4. Otherwise, stop.

The posterior distribution of each MS-BVAR is constructed using K; + Ky = 11 million
MCMC draws. The first K; = 1 million draws are discarded as a burn-in sample to reduce
the influence of the initial conditions. This leaves K5 = 10 million draws available for

inference.

A.53.83. Model Evaluation

The fit of the estimated constant coefficient and MS-BVARs is evaluated using marginal data
densities (MDDs). Gelfand and Dey (1994) and Geweke (2005) develop a modified harmonic
mean (HMH) estimator to compute MDDs. This estimator is employed to compute MDDs
of the fixed coefficient SVARs. The MS-BVARs are evaluated using MDDs computed using

the truncated MHM estimator of Sims, Waggoner, and Zha (2008).



Appendix B.

Necessary and Sufficient Conditions for Global
Identification of the Non-Recursive Models

This appendix verifies the non-recursive models satisfy the necessary and sufficient condi-
tions for global identification.® Verifying global identification ensures that another parame-
terization (i.e., model) does not yield the same (or a scalar multiple of the first) likelihood.

Rubio-Ramirez, Waggoner, and Zha (2010) provide the tools to check these conditions.

B.1.  Verifying Global Identification of the Non-Recursive Identification: In-

terest Rate Rule Model

Table B1 presents the identifying restrictions for the “Non-Recursive Identification: Interest
Rate Rule” model. An X entry in table Bl represents an unrestricted coefficient in the
impact matrix Ag. A blank space denotes a zero restriction. Each column represents a
behavioral equation. The behavioral equations are labeled at the top by their respective
structural shock. The row labels indicate which variables enter each behavioral equation at
impact.

The first step in checking for global identification is to verify that the number of restric-
tions is greater than or equal to n(n—1)/2, where n(= 9) denotes the number of endogenous

variables in the system. This condition is known as Rothenberg (1971)’s order condition.

®Rubio-Ramirez, Waggoner, and Zha (2010, pp. 678) show recursive models are always globally identified.



Table B1: Non-Recursive Identifying Restrictions on the Impact Matrix Aj: Interest Rate
Rule

Behavioral Equation

Shock  Risk Term  Credit Credit Money Monetary Aggregate Aggregate Labor
mf’remium Premium Supply Demand Demand Policy Supply  Demand Supply
RBaa
RlOyr
Rep
MI
MB
FFR
RGDP

P
UR
Notes: Each column in this table represents a behavioral equation. The behavioral equations are labeled at the top by their

respective structural shock. The row labels indicate which variables enter each behavioral equation at impact. An X entry
denotes an unrestricted impact coefficient, while a blank space denotes a zero restriction.

X
X

>

RNl

X X

X X X X X

X X X X
X

SRR Rl
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The order condition is verified by mapping the restrictions from Table B1 to A so that®

RK TM CS CD MD MP AS AD LS

Rpwa |az 0O 0 0 0 0 0 0 0]
Rioyr [a21 a2 0 0 0 0 0 0 0
Rep |as1 a2 ass aza azgs O 0 0 0
MI asq1 Q49 Q43 Q44 0 0 0 0 0
MB as1  Gsy 53 0 ass 0 0 0 0
Ao = FFR |as1 a2 as3 ass aes aes O 0 0
RGDP |a7;1 ar2 ars amn ars  are arr ars  arg
p agy asz asz age ass agg 0 ags  asy
UR | ag1  ag2 a3 0 0 0 0 0 agy |
qj 0 1 2 4 4 6 8 7 6
where the final row, ¢;, denotes the number of restrictions on the j-th column for j =1,...,9.

Since the total number of restrictions imposed (3-7_; ¢; = 38) is greater than n(n—1)/2 = 36,

For notational convenience, the column labels are shortened to RK (Risk Premium), TM (Term Pre-
mium), CS (Credit Supply), CD (Credit Demand), MD (Money Demand), MP (Monetary Policy), AS
(Aggregate Supply), AD (Aggregate Demand), and LS (Labor Supply).



Rothenberg (1971)’s order condition holds. However, it is important to note that this order
condition is only necessary but not sufficient for global identification.

To verify that the model is global identified, Rubio-Ramirez, Waggoner, and Zha (2010)’s
sufficient rank condition must also be satisfied. The rank condition investigates whether two
parameter points, Ag and Ay, are observationally equivalent (i.e., yield the same likelihood).
If so, the model is not globally identified. This condition is satisfied if all the associated rank
matrices for each structural equation of the model (which will be defined shortly) have full
rank.

Checking the rank condition begins with rearranging the columns of A, according to the
following ordering rule

G =>q@=>...2q

- n-

Without loss of generality, the updated Ay matrix is

AS AD LS MP MD CD CS TM RK
RGDP _a77 ars ar9 are Ays Qg4 A7y Atz A7l ]
p 0 ags asy ass ass asa aAg3 Gg2  A81
UR 0 0 agg 0 0 0 ags ags a9l
FFR 0 0 0 aes aes apss az Ge2  ael
MB 0 0 0 0 ass 0 as3 ase as
MI 0 0 0 0 0 (44 Q43 Qg2 Q41 |

Rep 0 0 0 0 ags aza asz azxx as

Rl()yr 0 0 0 0 0 0 0 as9 asi

¢ 8 7 6 6 4 4 2 1 0

According to Rubio-Ramirez, Waggoner, and Zha (2010), ordering the columns by de-
scending number of column restrictions is the most efficient way to check the rank condition.

Although the ordering of the columns is arbitrary, the authors warn that one column ordering



might satisfy the rank condition, while another ordering fails to do so. However, the authors
show if the above ordering fails to satisfy the rank condition, then all other possible column
orderings will also fail. Thus, adhering to the ordering rule established above prevents one
from erroneously rejecting a globally-identified model.”

The next step is to construct the restriction matrices @); for each j =1,...,9 equation of
the updated Ay matrix. Following Rubio-Ramirez, Waggoner, and Zha (2010), the restriction

matrices are

_0 1 0 0 0 0 0 O O_

o 0 1 o O 0 0 0 O

0o o o 1 o0 0o 0 0 O

o o o o0 1 0 0 0 O

o 0 o o o0 1 0 0 O
Q= :

0o o o o0 o o0 1 0 O

o o0 o o o 0 o0 1 0

o o o o0 o o0 0 0 1

o6 0 0 0 0 0 0 O]

"For example, one can show that the first Ay matrix’s column ordering fails to satisfy the rank condition.
The simplest way to verify this claim is to derive the rank matrix associated with the first structural equation.
Since there are zero column restrictions in the first column, the corresponding restriction matrix is a 9 x 9
zero matrix. Multiplying this zero matrix to Ap and stacking the result on top of [100000000] forms
the first equation’s rank matrix. It is straightforward to verify that the first equation’s rank matrix has
rank equal to one. Therefore, this column ordering leads to the erroneous conclusion that the model is not
globally identified. This line of reasoning extends to any identification scheme that imposes zero column
restrictions in the first column of the impact matrix; see, for example, the identifications of Robertson and
Tallman (2001), Leeper and Zha (2003), and Sims and Zha (2006). One can show after using the established
ordering rule that these models are globally identified.
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Finally, multiply the @); and A, matrices and stack the results on top of [I j ij(g_j)} for

j=1,...,9. This operation forms the associated rank matrices M; for each equation of Ay.
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The resulting rank matrices are thus given by

agg

o o o o o

[ 0
0
0
0
0
M= |
0
0
0
1
0 0
age  aes
0 ass
0 0
0 ass
0 0
0 0
0 0
0 0
0 0
0 0

agg agg Aage

0
0

ag4

44

a34

agg

ags

ae3

as3

a43

ass

0

a92

ae2

a52

42

a32

a22

ags

aes

ass

a3s5

ag1

ag1

as1

a41

asi

a21

a1

11

ag4

a64

(44
a4
0
0

asgs3
ag3
ag3
as3
a43

ass
0
0

ag2
ag2
ae2
as2
a42
as2

a22

0

asi
agl
ae1
asi
aal
asi
a1

ai

0
0
0

aee  a6s
0 ass5
0 0
0 ass
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

a64

0

Q44

a34

ae3

as3

a43

a33

a62

as2

42

a32

a22

a6l

as1

a41

asziy

a21

ai




ag9

o o o o

ass

ass

Q44

a34

a93

as3

@43

ass

a92

as52

Q42

a32

a22

o o o O

agl

as1

a41

a31

a21

ai

o o o O

12

agg

0 ags3
a4 Q43
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

ag2
a42

a22

0

ag1

a41

a21

a1

o o o o

o o o o o




a21

a22

ail

7M7:

92 491
Q

ag3

as2 asi

as3

ass

a21

a22

ail

Mg

13



(0 0 0 0 0 0 0 0 an_ (0 000 0 0 0 0 o0

0O 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 O O 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 O 0O 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 O O 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 O 0O 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 O O 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 O O 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 O O 0 0 0 0 0 0 0

Mg={10 o 0o 0 0 0 0 0 o0f,M=

1 0 0 0 0 0 0 O
1 0 0 0 0 0 0 0 0 O 1 0 0 0 0 0 0
01 0 0 0 0 0 0 O 0o 0 1 0 0 0 0 0
0o 0 1.0 0 0 0 0 O O 0 0 1 0 0 0 0
0O 0 0 1 0 0 0 0 O O 0 0 0 1 0 0 0
O 0 0 0 1 0 0 0 O O 0 0 0 0 1 0 0
0O 0 0 0 0 1 0 0 O O 0 0 0 0 0 1 0
0O 0 0 0 0 0 1 0 O o 0 0 0 0 0 0 1
00 0 0 0 0 0 1 0] 00 0 0 0 0 0 0

One can easily verify that the ranks of the M; matrices are equal to nine (i.e., full rank)
for j = 1,...,9. Therefore, Rubio-Ramirez, Waggoner, and Zha (2010)’s sufficient rank
condition is satisfied.

Since the necessary order and sufficient rank conditions are satisfied, the “Non-Recursive

Identification: Interest Rate Rule” model is globally identified.
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B.2.  Verifying Global Identification of the Non-Recursive Identification: Money

Supply Rule Model

The difference between the “Non-Recursive Identification: Money Supply Rule” model (shown
in Table B2) and the “Non-Recursive Identification: Interest Rate Rule” model is the loca-
tion of the zero restriction on MB in the “Credit Demand” column. Specifically, the zero

restriction on MB shifts down by one row.

Table B2: Non-Recursive Identifying Restrictions on the Impact Matrix Ag: Money Supply
Rule

Behavioral Equation

Shock  Risk Term  Credit Credit Money Monetary Aggregate Aggregate Labor
WPremium Premium Supply Demand Demand Policy Supply Demand Supply
RBaa
1%IOyr
Rep
MI
FFR
MB
RGDP

P
UR

S ST
Mok A

X

X X X X

X X X
X

SRR I i
SR aR RNl
SRRl

Notes: Each column in this table represents a behavioral equation. The behavioral equations are labeled at the top by their
respective structural shock. The row labels indicate which variables enter each behavioral equation at impact. An X entry
denotes an unrestricted impact coefficient, while a blank space denotes a zero restriction.

Although this difference seems minor, changing the location of the aforementioned zero
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restriction creates a new Ay matrix, i.e.,

RK TM CS CD MD MP AS AD LS

Rpaa |11 0 0 0 0 0 0 0 0
Rioyr |a21 a2 0 0 0 0 0 0 0
Rop  |as1 a3z ag3 aga azs O 0 0 0

MI asgl Q49 Q43 Q44 0 0 0 0 0
FFR asy G52 as3  As4  As55 0 0 0 0

MB a1 ae2 ag3 0 ags a6 0 0 0
RGDP |a71 a2 ar3 ars a7s  are  arr  arg  arg

P agy agy agz ag4e ags agsg 0 agg asg

UR a9l a9 ags 0 0 0 0 0 agg

¢ 0 1 2 4 4 6 8 7 6

The implication is that the global identification results from the previous section cannot
be automatically carried over to the “Non-Recursive Identification: Money Supply Rule”
model. In this particular case, however, the order condition continues to hold because no
additional restrictions are added to the model.

To verify Rubio-Ramirez, Waggoner, and Zha (2010)’s sufficient rank condition, rearrange

16



the columns of Ay from left to right in descending order so that

AS AD

RGDP [ar  ars
P 0 ass
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D=1 o o
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Qe

Finally, stack the products of the (); and A, matrices on top of [Ij ij(g_j)} for j =

0

o o o o o o o

o o o o o

o o o o o o o
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1,...,9. The results are

agg

o o o o o

ag6

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 0
ags O
ass G54
0 au
azs as4
0 0
0 0
0 0
0 0
0 0
0 0

agg

ags

ae3

as3

a43

ass

0 ass asgy ase

0

a92

ae2

a52

42

a32

a22

ags

aes

ass

a3s5

ag1

ag1

as1

a41

asi

a21

a1

20

ag4

G54

(44

asq
0
0

asgs3
ag3
ag3
as3
a43

ass
0
0

ag2
ag2
ae2
as2
a42
as2

a22

0

asi
agl
ae1
asi
aal
asi
a1

ai

0
0
0

aee  a6s
0 ass5
0 0
0 ass
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

0
G54
(44
asq

0

0

ae3

as3

a43

a33

a62

as2

42

a32

a22

a6l

as1

a41

asziy

a21

ai




ag9

o o o o

ass

ass

a54

Q44

a34

a93

as3

@43

ass

a92

as52

Q42

aso

a2

o o o o

agl

as1

a41

a31

a21

ai

o o o o

21

agg

0 ags3
a4 Q43
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

ag2
a42

a22

0

ag1

a41

a21

a1

o o o o

o o o o o




a21

a22

a1

aM7:

92 @91
Qa

a93

ae1
2

0 a3 Ag

a65

ae6

a21

a22

ai

0

Mg

22



(0 0 0 0 0 0 0 0 an_ (0 000 0 0 0 0 o0
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1 0 0 0 0 0 0 O
1 0 0 0 0 0 0 0 0 O 1 0 0 0 0 0 0
01 0 0 0 0 0 0 O 0o 0 1 0 0 0 0 0
0o 0 1.0 0 0 0 0 O O 0 0 1 0 0 0 0
0O 0 0 1 0 0 0 0 O O 0 0 0 1 0 0 0
O 0 0 0 1 0 0 0 O O 0 0 0 0 1 0 0
0O 0 0 0 0 1 0 0 O O 0 0 0 0 0 1 0
0O 0 0 0 0 0 1 0 O o 0 0 0 0 0 0 1
00 0 0 0 0 0 1 0] 00 0 0 0 0 0 0

It is straightforward to verify that the above M; matrices are full rank for j =1,...,9.
Therefore, Rubio-Ramirez, Waggoner, and Zha (2010)’s sufficient rank condition is satisfied.
Since the necessary order and sufficient rank conditions are satisfied, the “Non-Recursive

Identification: Money Supply Rule” model is also globally identified.
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B.3.  Verifying Global Identification of the Non-Recursive Identification: In-

terest Rate/Money Supply Rule Model

The third non-recursive identifcation scheme comes from Sims and Zha (2006). Under this
identification scheme, the Fed switches between using the FFR and the MB as its policy
instrument. Thus, I refer to this identification as the “Non-Recursive Identification: Interest

Rate/Money Supply Rule” scheme (shown in Table B3).

Table B3: Non-Recursive Identifying Restrictions on the Impact Matrix Ay: Interest
Rate/Money Supply Rule

Behavioral Equation

Shock  Risk Term  Credit Credit Money Monetary Aggregate Aggregate Labor
Variable Premium Premium Supply Demand Demand Policy Supply Demand Supply
RBaa
1:{IOyr
Rep
MI
MB
FFR
RGDP

P
UR

Notes: Each column in this table represents a behavioral equation. The behavioral equations are labeled at the top by their
respective structural shock. The row labels indicate which variables enter each behavioral equation at impact. An X entry
denotes an unrestricted impact coefficient, while a blank space denotes a zero restriction.

S T e
Mok A
ol

X X
X

SRR I
SRRl
SRR Rl

Under this identification, the Fed no longer responds to RGDP and P prices at impact.
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These short-run restrictions are mapped to the Ay matrix

RK TM CS CD MD MP AS AD LS

Rpaa |11 0 0 0 0 0 0 0 0
Rioyr |a21 a2 0 0 0 0 0 0 0
Rop  |as1 as2 ags aga azs O 0o 0 0
MI asql Q49 Q43 Q44 0 0 0 0 0
MB |as1 as2 as3 asa ass  asg 0 0 0

FFR a1 ae2 ag3 0 ags a6 0 0 0
RGDP (a7 ar2 ar3 ars  ars 0 arr ars ar

P agy agy (g3 4g4  4g5 0 0 ass agy

UR a9l a9 ags 0 0 0 0 0 agg

¢ 0 1 2 4 4 7T 8 T 6

Note the number of restrictions (Y7, ¢; = 39) is greater than n(n—1)/2 = 36. Therefore,
the necessary order condition holds.

To verify Rubio-Ramirez, Waggoner, and Zha (2010)’s sufficient rank condition, rearrange
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the columns of Ay from left to right in descending order so that

AS AD

RGDP [ar  ars
P 0 ass
FFR |0 0
UR [0 O
MB [0 0
D=1 o o
Rep |0 0
Rioyr 0 0
Rpas [0 0
qj 8 7

0

1

MP

o o o o o

ae6

a56

LS

arg

asg

agg

o o o o o

o o o o
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7Q3:

7Q5:

Q2 =

Qi =
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Qe

Finally, stack the products of the (); and A, matrices on top of [Ij ij(g_j)} for j =

0

o o o o o o o

o o o o o

o o o o o o o
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1,...,9. The results are

0 ass 0 agg ass asy asy asy asi
0 0 agg 0 ags O ag3 age agl
0 0 0 agg O 0 agz ag2 ag
0 0 ass 0 as5 asa asz ase as
0 0 0 0 0 ag4 a43 aqo aqy

0 0 0 0 a3 azs azz azx aszl

M, = ;

0 0 0 0 0 0 0 a9 agn

0 0 0 0 0 0 0 0 a1

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0
0 0 age 0 aes 0 a3 ae2 a61_ _a77 ars 0 arg ars ara ar3 arz an
0 0 0 a9 0 0 ag3 agp ag 0 ass 0 agy ags ags ags ag2 asi
0 0 ase 0 as5 asa as3 as2 asl 0 0 0 ag 0 0 ags ag2 ag
0 0 0 0 0 a4 aa3 ag2 ag 0 0 0 0 a3z azs azz azx az
0 0 0 0 azs azs aszz aszs a3zl 0 0 0 0 0 0 0 a9 ao
0O 0 O 0 0 0 0 a2 an 0 0 0 O 0 0 0 0 a1

My={0o o 0 0 0 0 0 0 an|.-Ms=
0 0 0 O 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 O 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0] 0 0 1 0 0 0 0 0 0
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(0 0 0 0 0 0 0 0 an_ (0 000 0 0 0 0 o0

0O 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 O O 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 O 0O 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 O O 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 O 0O 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 O O 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 O O 0 0 0 0 0 0 0
0O 0 0 0 0 0 0 0 O O 0 0 0 0 0 0 0

Mg={10 o 0o 0 0 0 0 0 o0f,M=

1 0 0 0 0 0 0 O
1 0 0 0 0 0 0 0 0 O 1 0 0 0 0 0 0
01 0 0 0 0 0 0 O 0o 0 1 0 0 0 0 0
0o 0 1.0 0 0 0 0 O O 0 0 1 0 0 0 0
0O 0 0 1 0 0 0 0 O O 0 0 0 1 0 0 0
O 0 0 0 1 0 0 0 O O 0 0 0 0 1 0 0
0O 0 0 0 0 1 0 0 O O 0 0 0 0 0 1 0
0O 0 0 0 0 0 1 0 O o 0 0 0 0 0 0 1
00 0 0 0 0 0 1 0] 00 0 0 0 0 0 0

One can verify that the above M; matrices are full rank for j = 1,...,9. Thus, Rubio-
Ramirez, Waggoner, and Zha (2010)’s sufficient rank condition is satisfied.
Given the necessary order and sufficient rank conditions are satisfied, the “Non-Recursive

Identification: Interest Rate/Money Supply Rule” model is also globally identified.
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Appendix C.
Data Appendix

The MS-BVARs are estimated on a quarterly U.S. sample from 1960Q1 through 2018Q4.
The data are gathered from the Federal Reserve Bank of St. Louis’s FRED database and
FRASER digital archive. Table C1 provides a detailed data description and corresponding
sources. All time series are seasonally adjusted except for the interest rates and popula-
tion. Quarterly observations are only available for real and nominal GDP. Thus, temporal

aggregation is used to obtain quarterly observations from monthly data.

Table C1: Data Descriptions and Sources

Series Description Source Mnemonic
RGDPQ Real Gross Domestic Product, Billions of Chained 2012 Dollars FRED GDPC1
NGDPQ Gross Domestic Product, Billions of Dollars FRED GDP

POP Population, Thousands FRED B230RC0Q1735BEA
UR Civilian Unemployment Rate FRED UNRATE
FFR Effective Federal Funds Rate FRED FEDFUNDS
AMB St. Louis Adjusted Monetary Base, Billions of Dollars FRED AMBSL

M2 M2 Money Stock, Billions of Dollars FRED M2SL
CURR Currency Component of M1, Billions of Dollars FRED CURRSL
TVCKS Traveler’s Checks Outstanding, Billions of Dollars FRED TVCKSSL
Repem!  Prime Commercial Paper Rate, 4-6 Month Maturity FRASER —

Repsm 3-Month Commercial Paper Rate FRED CP3M
Repram 3-Month AA Financial Commercial Paper Rate FRED CPF3M
Rioyr 10-Year Treasury Constant Maturity Rate FRED GS10

RBaa Moody’s Seasoned Baa Corporate Bond Yield FRED BAA

t Weekly and monthly observations for the prime commercial paper rate are available from September 1929
to April 1997. The interested reader is referred to G.13 Selected Interest Rates at https://fraser.stlouisfed.
org/title/1238.

C.1. Data Construction and Transformation

Table C2 defines the information set ;. All variables in y, are expressed in natural loga-
rithms and scaled by 400 except for the interest rates and the unemployment rate, which are

expressed in percents. The construction of MI and Rgp are discussed in detail below.
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Table C2: Variables in the Information Set

Variables Description Construction Transformation
RGDP Per Capita Real GDP RGDPQ/POP 400 x Log-Level
P Implicit GDP Price Deflator 100 x (NGDPQ/RGDPQ) 400 x Log-Level
UR Unemployment Rate UR Percent

FFR Federal Funds Rate FFR Percent

MB Per Capita Monetary Base AMB/POP 400 x Log-Level
MI Per Capita Inside Money See (C.1) 400 x Log-Level
Rep Commercial Paper Rate See (C.2) Percent

Rioyr Ten-Year U.S. Treasury Bond Yield Rigy, Percent

RBaa Moody’s Baa Corporate Bond Yield Rgaa Percent

C.1.1. Per Capita Inside Money

An important distinction made in this paper is that between inside and outside money. Inside
money is defined as the amount of bank deposits and other short-term liabilities issued by
the banking system, whereas outside money consists of currency and reserves. In contrast
to using the monetary base as a measure of outside money, there is not a directly observable
measure of inside money. Therefore, I construct an inside money aggregate as follows.

The construction of the inside money aggregate relies on the readily available M1 and M2.
However, it is important to note M1 and M2 contain inside and outside money components.
For instance, M1 consists of currency (including vault cash), traveler’s checks, demand de-
posits, and other checkable deposits (e.g., negotiable order of withdrawal accounts and credit
union share draft accounts). M2 includes M1 plus saving deposits, small-denomination time
deposits, and money market mutual funds.

With these definitions in mind, I first subtract the currency (CURR) and traveler’s checks
(TVCKS) components of M1 from M2. Next, I divide this aggregate measure of inside money
by population (POP). Finally, I take the natural logarithm and multiply by 400 to acquire
MI, such that

(C.1)

M2 — CURR — TVCKS
MI—400x1n< POD )
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C.1.2. Commercial Paper Rate

Each time series in Table C1 has 236 available observations from 1960Q1 to 2018Q4 except
for the three commercial paper rates. The three- and six-month commercial paper rate series
(Ropsm and Repem ) are available from 1960Q1 to 1997Q2. Observations for the three-month
financial commercial paper rate (Rcpray) only date back to 1997Q1.

Following McCracken and Ng (2016), I splice the three commercial paper rates together
to construct a new commercial paper rate series (Rcp) that spans the entire sample period.

The splicing procedure used to construct Rep is

Repem from 1960Q1 to 1971Q1,

Rep = {Repay from 1971Q2 to 199604, (C.2)

chng from 1997@1 to 2018@4
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Appendix D.

Time Series Plots

Figure D1: U.S. Macroeconomic Data, 1960Q1-2018Q4
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Notes: This figure plots U.S. per capita real GDP (RGDP), the implicit GDP price deflator
(P), and the unemployment rate (UR) from 1960Q1 to 2018Q4. RGDP and P are in
natural logarithms and scaled by 400. The shaded bars indicate NBER recession dates.
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Figure D2: Per Capita Inside and Outside Money, 1960Q1-2018Q4

Per Capita Inside and Outside Money
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Notes: This figure plots per capita inside money (MI) and per capita outside money (MB)
from 1960Q1 to 2018Q4. MI equals minus currency and traveler’s checks. MB includes
currency, vault cash, and reserves held by the banking system. MI and MB are in natural
logarithms and scaled by 400. The shaded bars indicate NBER recession dates.
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Figure D3: Short- and Long-Term Private and Government Interest Rates, 1960Q1-2018Q4
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Notes: This figure plots U.S. short- and long-term private and government interest rates
from 1960Q1 to 2018Q4. The top panel reports the effective fed funds rate (FFR) and the
commercial paper rate (Rcp). The bottom panel shows the constant maturity yield on
ten-year U.S. Treasury bonds (Rjoy.) and the Moody’s Baa corporate bond yield (Rpaa)-
The shaded bars indicate NBER recession dates.

38



Appendix E.

Computing Generalized Impulse Response Functions

This appendix overviews how to compute generalized impulse response functions (GIRFs) of
an MS-BVAR. Computation of the GIRFs relies on an algorithm described in Karamé (2015)
and Bianchi (2016). The GIRFs in the paper are constructed under the assumption that
the regime is known with certainty at impact. However, these conditional GIRFs take into
account the possibility of switching to future regimes. For the sake of brevity, the interested

reader is referred to Karamé (2015) and Bianchi (2016) for more technical details.

E.1. Computing a GIRF

Sims and Zha (2006) and Sims, Waggoner, and Zha (2008) write the structural MS-BVAR
YiAo(s)) = i A (s) + €27 (st), et ~ N1, L), t=1,...,T, (E.1)

where all the parameters of each matrix can be gathered together to form Aq = {Ag(h)},
Ay = {A:(h)}, and E = {E(h)} for h = 1,..., H, where H denotes the total number of
states or regimes. Let § = {Ag, A, =} be the set of unknown impact and lag coefficients and
SV factor loadings of the MS-BVAR. These parameters are estimated using the Metropolis-
within-Gibbs MCMC sampler of Sims, Waggoner, and Zha (2008).

Suppose the first regime and the transition matrix () are known at impact. It follows that

one can predict a particular sequence of future regimes up to the ¢+ k horizon by computing

Prob [siyis Stqh—15- - -5 St41]563 0] = Qsy i 1,500 X PTOD [Spqp1, oo, Seq1]54: 6] (E.2)

Conditional on each possible shock sequence €; and possible path of s;, the optimal forecast
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for y;4 can be calculated as

P
E [Yetk|St4ks - - - 5t,60:0] = c(s¢) + Z E [3/t+k—j|5t+k—1, 88,64 0] Aj(St)- (E.3)

i=1

The shocked trajectory is the weighted average of all possible responses

E [yt+k|3t+k, Ets 9] = Z s Z E [yt+k|3t+k7 .., Sty E¢y 9] x Prob [St+k7 cey St+1|8t; 9] . (E4)

St+k St+1

The conditional GIRF, given the initial regime s; and shock ¢, is defined as the difference

between the shocked trajectory and a baseline (non-shocked) trajectory such that

GIRF(’% Sty Et; 9) =E [yt+k|3t+k:75t§ 9] -k [yt+k|8t+k, 0; 9] . (E5)
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